

International Civil Aviation Organization

The Twentieth Meeting of the Regional Airspace Safety Monitoring Advisory Group (RASMAG/21)

Bangkok, Thailand, 14-17 June 2016

Agenda Item 3: Reports from Asia/Pacific RMAs and EMAs

JASMA RVSM SAFETY REPORT

(Presented by JASMA)

SUMMARY

This paper presents the results of the airspace safety assessment of the Fukuoka Flight Information Region (FIR) by the Japan Airspace Safety Monitoring Agency (JASMA) for the time period from 1 January 2015 to 31 December 2015.

1. INTRODUCTION

1.1 The paper provides details of the airspace safety oversight assessment undertaken by the Japan Airspace Safety Monitoring Agency (JASMA) for the RVSM implementations in Fukuoka FIR. The reports is detailed in **Attachment 1**.

2. DISCUSSION

2.1 The report shows that for the Fukuoka FIR, the level of risk for the reporting period was 22.11×10^{-9} which exceeds the target level of Safety 5.0×10^{-9} (TLS).

2.2 **Table 1** summarizes Fukuoka FIR RVSM technical, operational and total risks. **Figure 1** presents collision risk estimate trends during the period from 1 January 2015 to December 2015.

Fukuoka FIR – estimated annual flying hours = 1101469 hours (note: estimated hours based on Dec 2012 traffic sample data)								
Source of Risk	Source of Risk Risk Estimation TLS Remarks							
RASMAG20 Total Risk (PREVIOUS RASMAG)	7.17 x 10 ⁻⁹	5.0 x 10 ⁻⁹	Exceed the TLS					
Technical Risk	0.44 x 10 ⁻⁹	2.5 x 10 ⁻⁹	Below Technical TLS					
Operational Risk	21.67 x 10 ⁻⁹	_	-					
Total Risk	22.11 x 10 ⁻⁹	5.0 x 10 ⁻⁹	Exceed the TLS					

Table 1: Fukuoka FIR RVSM Risk Estimates

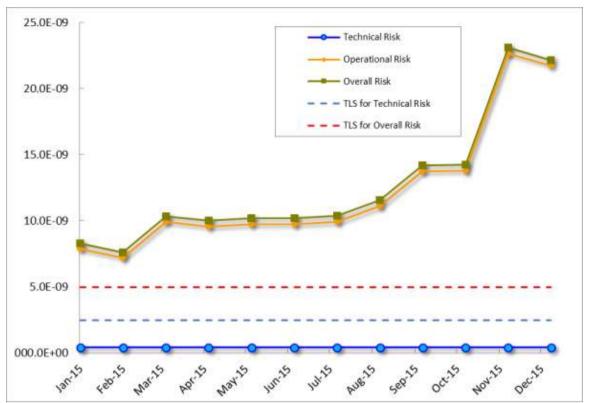


Figure 1: Fukuoka FIR RVSM Risk Estimate Trends

2.3 **Table 2** presents as summary of the LHD causes within Fukuoka FIR from 1 January 2015 to 31 December 2015.

Code	LHD Category Description	No.
А	Flight crew fails to climb or descend the aircraft as cleared	0
В	Flight crew climbing or descending without ATC clearance	2
С	Incorrect operation or interpretation of airborne equipment	1
D	ATC system loop error	9
E	ATC transfer of control coordination errors due to human factors	12
F	ATC transfer of control coordination errors due to technical issues	0
G	Aircraft contingency leading to sudden inability to maintain level	0
Η	Airborne equipment failure and unintentional or undetected level change	2
Ι	Turbulence or other weather related cause	19
J	TCAS resolution advisory and flight crew correctly responds	3
Κ	TCAS resolution advisory and flight crew incorrectly responds	0
L	Non-approved aircraft is provided with RVSM separation	0
Μ	Other	3
Total		51

Table 2: Summar	y of LHD Ca	auses within	Fukuoka FIR.
-----------------	-------------	--------------	--------------

2.4 **Figure 2** provides the geographic location of LHD reports including the information provided from MAAR during the assessment period. The solid square blue symbols represent LHD location in RVSM stratum inside of Fukuoka FIR and the open square blue symbols represent LHD location out of RVSM stratum or outside of Fukuoka FIR. The circle size means the time of 50 seconds or more.

2.5 The estimated one year overall risk exceeded the TLS some of transfer errors and ATC system loop errors are above in 2015. It is reported that the ATC facilities and aircraft operator concerned are discussing these events to mitigate this kind of human errors.

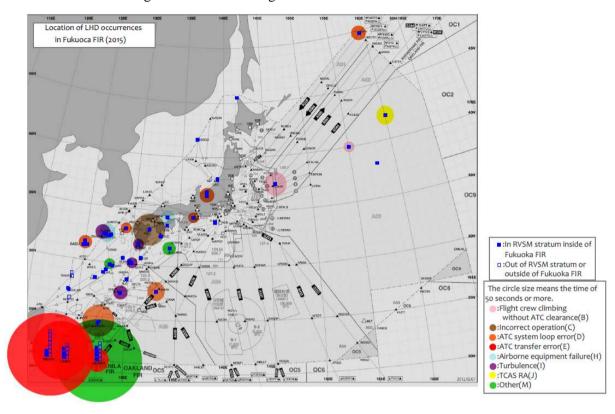


Figure 2: Fukuoka FIR – Risk Bearing LHD

3. ACTION BY THE MEETING

- 3.1 The meeting is invited to:
 - a) note the information contained in this paper; and
 - b) discuss any relevant matters as appropriate.

Attachment 1

AIRSPACE SAFETY REVIEW FOR THE RVSM IMPLEMENTATION

IN FUKUOKA FLIGHT INFORMATION REGION

JAN 2015 to DEC 2015

(Presented by JASMA) JASMA の RVSM 安全性検証レポート

SUMMARY

The purpose of this repot is to compare actual performance to safety goals related to continued use of reduced vertical separation minimum (RVSM) in Fukuoka Flight Information Region (FIR). This report contains a summary of large height deviation reports received by the JASMA and an update of the vertical collision risk for the time period of 1 January 2015 to 31 December 2015. There are at total of 51 reported large height deviations that occurred during this period in Fukuoka FIR. The vertical collision risk estimate for the RVSM airspace in Fukuoka FIR was 22.11 x 10^{-9} that exceeds the target level of safety (TLS).

1. INTRODUCTION

1.1 This attachment presents a summary of large height deviation reports received by the JASMA and an update of the vertical collision risk for the time period of 1 January 2015 to 31 December 2015.

2. DISCUSSION

2.1 Traffic Sample Data (TSD)

2.1.1 Traffic Sample data for the month of December 2015 of aircraft operating in the Fukuoka FIR were used to assess the safety of RVSM airspace.

2.2 Large Height Deviation (LHD)

2.2.1 A series of cumulative 12-month of LHD reports were used in this safety assessment starting from January 2015 to December 2015.

2.2.2 Summary of LHD Occurrences in the Fukuoka FIR

2.2.3 **Table 1** summarizes the number of LHD occurrences and associated LHD duration (in minutes) by month in the RVSM airspace of the Fukuoka FIR.

Month-Year	No. of LHD Occurrences	LHD Duration (Minutes)
January 2015	3	8
February 2015	2	3
March 2015	3	16.1
April 2015	6	10
May 2015	3	1
June 2015	6	0
July 2015	6	1
August 2015	6	8
September 2015	3	15.6
October 2015	5	1.2
November 2015	4	52.5
December 2015	4	12.5
Total	51	128.7

Table 1: Summary of LHD Occurrences and Duration per Month in the Fukuoka FIR

2.2.4 The LHD reports are separated by categories based on the details provided for each deviation. **Table 2** presents a summary of the LHD causes within Fukuoka FIR from Jan. 2015 until Dec. 2015 against 2014. The number of LHD reports increased from 34 to 51.

Code	LHD Category Description	2014	2015
Α	Flight crew fails to climb or descend the aircraft as cleared	0	0
В	Flight crew climbing or descending without ATC clearance	0	2
С	Incorrect operation or interpretation of airborne equipment	0	1
D	ATC system loop error	3	9
E	ATC transfer of control coordination errors due to human factors	9	12
F	ATC transfer of control coordination errors due to technical issues	0	0
G	Aircraft contingency leading to sudden inability to maintain level	1	0
Н	Airborne equipment failure and unintentional or undetected level change	0	2
Ι	Turbulence or other weather related cause	7	19
J	TCAS resolution advisory and flight crew correctly responds	11	3
Κ	TCAS resolution advisory and flight crew incorrectly responds	0	0
L	Non-approved aircraft is provided with RVSM separation	0	0
Μ	Other	3	3
Total		34	51

Table 2: Summary of LHD Causes within Fukuoka FIR.

2.2.5 **Appendix A** contains the details of the twenty four (24) LHDs contributed to the operational risk, which were reported to the JASMA during the reporting period.

2.2.6 **Appendix B** contains the details of the twenty seven (27) LHDs which were not involved in the operational risk. Nineteen (19) were turbulence or other weather related causes categorized I. Three (3) were TCAS resolution advisory and flight crew correctly responds cases categorized J. Two (2) were airborne equipment failure categorized H. Three (3) were unknown but there is a possibility of TCAS RA and CPDLC malfunctioning cases.

2.2.7 **Appendix C, Figure 3** provides the geographic location of LHD reports during the assessment period. The solid square blue symbols represent LHD location in RVSM stratum inside of Fukuoka FIR and the open square blue symbols represent LHD location out of RVSM stratum or outside of Fukuoka FIR. The circle size means the time of 50 seconds or more.

3. Risk Assessment and Safety Oversight

3.1 This section updates the results of safety oversight for the RVSM implementation in the Fukuoka FIR. Accordingly, the internationally accepted collision risk methodology is applied in assessing the safety of the airspace.

3.1.1 Estimate of the Collision Risk Model (CRM) Parameters shown in **Table 3**. The average sizes of aircrafts are a little bit smaller than the December 2014 TSD.

Parameter	able 3 : Summarizes the value of the pa		
Symbol	Parameter Definition	Parameter Value	Source for Value
Pz(1000)	Probability that two aircraft nominally separated by the vertical separation minimum 1000 feet are in vertical overlap	1.7×10 ⁻⁸	Value specified in ICAO Doc. 9574
Pz(0)	Probability that two aircraft at the same nominal level are in vertical overlap	0.54	Value often used (shown in RVSM/TF-9-IP/2)
Py(0)	Probability that two aircraft on the same track are in lateral overlap	0.0711	Using the data of secondary surveillance radar obtained by the Hachinohe Air Route Surveillance radar (2011).
λx	Average aircraft length	0.0267 nm	
λy	Average aircraft width	0.0245 nm	FDPS data (December 2015)
λ <i>z</i> .	Average aircraft height	0.0078 nm	
$\left \Delta V\right $	Average along track speed of aircraft pairs	28.9 kt	Kushiro Air Route Surveillance Radar data (R220 route, NOPAC, Apr. 1994)
$\overline{ V }$	Individual-aircraft along track speed	480 kt	Value often used
$\overline{ \dot{y} }$	Average cross track speed of aircraft pairs	11.6 kt	Kushiro Air Route Surveillance Radar data (R220 route, NOPAC, Apr. 1994)
Ż	Average vertical speed of aircraft pairs	1.5 kt	Value often used
Nx(same)	The passing frequency of aircraft pair assigned to the adjacent flight levels under the same direction traffic	3.07×10 ⁻²	FDPS data (December 2015)
Nx(opp)	The passing frequency of aircraft pair assigned to the adjacent flight levels under the opposite direction traffic	2.03×10 ⁻¹	FDPS data (December 2015)
Naz ^{technical} (cross)	The collision risk for crossing routes (technical dimension)	1.29×10 ⁻¹⁰ [accidents/flight hour]	FDPS data (December 2015) is utilized for the calculation of $E_z(\theta)$.

 Table 3: Summarizes the value of the parameters used for the risk calculation.

Naz ^{operational} (cross)	The collision risk for crossing routes (operational dimension)	6.34×10 ⁻⁹ [accidents/flight hour]	By eq. (12).
Н	Total flight hours of aircraft flying on the route segments within airspace under consideration	1,375,006 flight hours	12 times of December 2015
T(0)	LHD duration in hours	2.15flight hours	24 LHD reports received from Jan. 2015 to Dec. 2015

3.2 Risk Calculation

3.2.1 Based on the TSD for one month of December 2015 extracted from the JCAB Flight Data Processing System (FDPS), the numbers of passing events, $n_p(\text{same})$ and $n_p(\text{opp})$, were calculated for each route segment consisting of two fixes.

3.2.2 Using the CRM parameters, such as average size of aircraft and average relative speed of the aircraft pair, contained in Table 3, kinematical coefficients of passing frequencies for the same and opposite direction traffic can be calculated by

$$K(same) = 1 + \frac{\lambda x}{\left|\overline{\Delta V}\right|} \left(\frac{\left| \dot{y} \right|}{\lambda y} + \frac{\left| \dot{z} \right|}{\lambda z} \right)$$
(1)
$$K(opp) = 1 + \frac{\lambda x}{2\left|\overline{V}\right|} \left(\frac{\left| \dot{y} \right|}{\lambda y} + \frac{\left| \dot{z} \right|}{\lambda z} \right)$$
(2)

Same-direction passing frequency N_x (same), opposite-direction passing frequency N_x (opp) and equivalent opposite-direction passing frequency $N_x^{\ z}(e)$ are defined by

$$N_x(same) = \frac{2n_p(same)}{H},$$
(3)

$$N_x(opp) = \frac{2n_p(opp)}{H} \text{ and }$$
(4)

$$N_x^z(e) = N_x(opp) + \frac{K(same)}{K(opp)} N_x(same),$$
(5)

respectively.

Technical Risk is estimated by

$$N_{az}^{technical} = N_{az}^{technical}(o+s) + N_{az}^{technical}(cross)$$
(6)

where,

$$N_{az}^{technical}(o+s) = P_{z}(1000)P_{y}(0)N_{x}^{z}(e)K(o)$$
(7)

$$N_{az}^{technical}(cross) = P_{z}(1000) \sum_{\theta} P_{h}(\theta) E_{z}^{cross}(\theta) \left[\frac{2\left| h(\theta) \right|}{\pi \lambda_{xy}} + \frac{\left| \dot{z} \right|}{2\lambda_{z}} \right]$$
(8)

 $P_h(\theta)$ was calculated assuming that the distributions of along-track positions and of cross-track deviations follow normal distributions whose standard deviations are $5/\sqrt{6}$ NM and 0.132, respectively. Remark that 5NM is the radar separation standard and $5/\sqrt{6}$ NM is the standard deviation of the uniform distribution with the domain width = 5NM. The value 0.132 is calculated from the Hachinohe radar data collected from August 2001 till July 2002. $P_h(\theta)$, $E_z^{cross}(\theta)$ and $\overline{1}$

 $\dot{h}(\theta)$ were calculated every ten degrees.

Operational Risk is given by

$$N_{az}^{operationh} = N_{az}^{operationh}(o+s) + N_{az}^{operationh}(cross)$$
(9)

where,

$$N_{az}^{operationb}(o+s) = \frac{\sum P_{z}(z)T(z)}{H} P_{y}(0) N_{x}^{z}(e) K(opp)$$
(10)

$$N_{az}^{operationh}(cross) = \frac{\Sigma P_z(z)T(z)}{H} \sum_{\theta} P_h(\theta) E_z^{cross}(\theta) \left[\frac{2\left| \dot{h(\theta)} \right|}{\pi \lambda_{xy}} + \frac{\left| \dot{z} \right|}{2\lambda_z} \right]$$
(11)

equivalently,

$$N_{az}^{operationb}(cross) = \frac{\Sigma P_z(z)T(z)}{H} \cdot \frac{N_{az}^{technical}(cross)}{P_z(1000)}$$
(12)

Executive Summary

3.3 Safety Oversight for the RVSM implementation in the Fukuoka FIR

3.3.1 **Table 4** presents the estimates of vertical collision risk for the RVSM airspace of the Fukuoka FIR. The technical risk is estimated to be 0.44×10^{-9} fatal accidents per flight hour. The operational risk estimate is 21.67×10^{-9} fatal accidents per flight hour. The estimate of the overall vertical collision risk is 22.11×10^{-9} fatal accidents per flight hour, which exceeds the globally agreed TLS value of 5.0×10^{-9} fatal accidents per flight hour.

3.3.2 **Figure 2** presents collision risk estimate trends by type (technical, operational, and total) for each month using the appropriate cumulative during the period from January 2015 to December 2015.

Fukuoka FIR – estimated annual flying hours = 1101469 hours (note: estimated hours based on Dec 2012 traffic sample data)									
Source of Risk	Source of Risk Risk Estimation TLS Remarks								
RASMAG20 Total Risk (PREVIOUS RASMAG)	7.17 x 10 ⁻⁹	5.0 x 10 ⁻⁹	Exceed the TLS						
Technical Risk	0.44 x 10 ⁻⁹	2.5 x 10 ⁻⁹	Below Technical TLS						
Operational Risk	21.67 x 10 ⁻⁹	_	-						
Total Risk	22.11 x 10 ⁻⁹	5.0 x 10 ⁻⁹	Exceed the TLS						

Table 4: Fukuoka FIR RVSM Risk Estimates

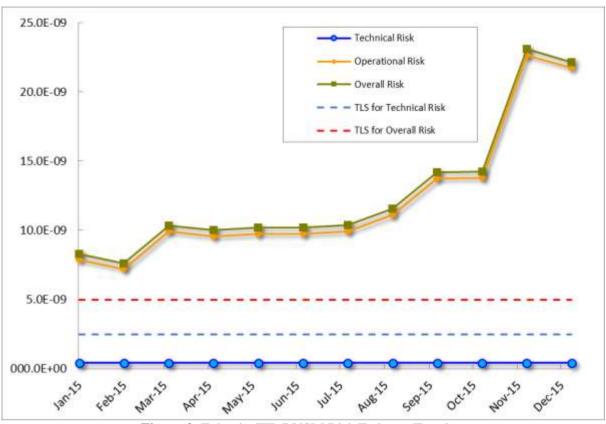


Figure 2: Fukuoka FIR RVSM Risk Estimate Trends

3.3.3 The estimated one year Overall risk exceeded the TLS some of transfer errors and ATC system loop errors are above in 2015. It is reported that the ATC facilities and aircraft operator concerned are discussing these events to mitigate this kind of human errors.

4. ACTION BY THE MEETING

4.1 The meeting is invited to:

- a) note the information contained in this paper; and
- b) discuss any relevant matters as appropriate.

.....

Appendix A

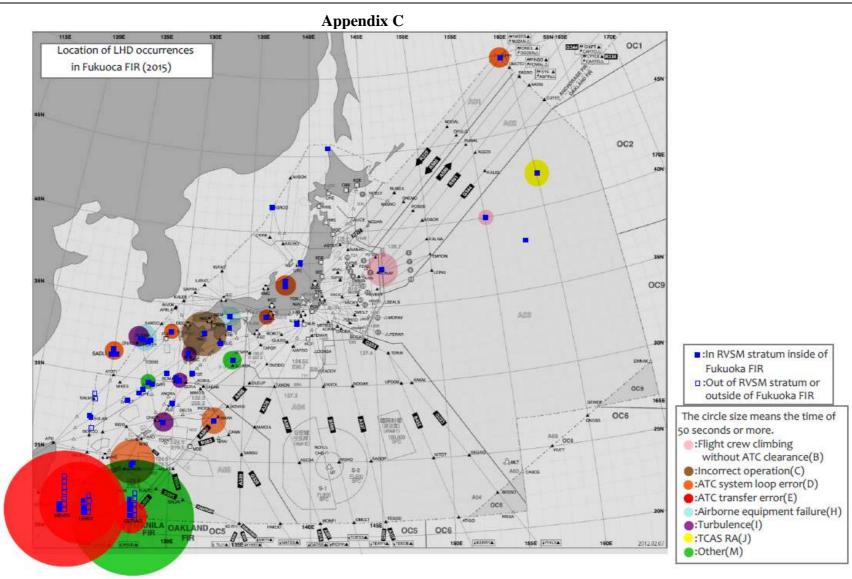
Height Deviations contributed to Operational Risk in the Fukuoka FIR Reported to the JASMA during the Reporting Period

Event date	Source	Location of deviation	Duration of LHD (min)	Cause	code
11 Jan 15	ATMC	50NM South West of BIXAK(A590)	5	ATC system loop error (Flight crew misunderstands the clearance)	D
17 Jan 15	ATMC	NIPPI(R220)	3	ATC system loop error (Flight crew misunderstands the clearance)	D
30 Jan 15	Fukuoka ACC	15NM North West of SADLI (A593)	0	ATC transfer of control coordination errors due to human factors	Е
20 Feb 15	ATMC	GURAG (A590)	3	ATC transfer of control coordination errors due to human factors	Е
25 Mar 15	Fukuoka ACC	10NM East of TAE	12.3	Incorrect operation or interpretation of airborne equipment	С
29 Mar 15	ATMC	GURAG (A590)	2	ATC transfer of control coordination errors due to human factors	Е
29 Mar 15	Fukuoka ACC	10NM South East of SADLI (A593)	1.8	ATC system loop error (Flight crew misunderstands the clearance)	D
10 Apr 15	Naha ACC	LEBIX (N884)	5	ATC transfer of control coordination errors due to human factors	Е
22 Apr 15	Sapporo ACC	LUMIN(B223)	0	ATC transfer of control coordination errors due to human factors	Е
25 Apr 15	Tokyo ACC	10NM West of OTARI (Y517)	3	ATC system loop error (Flight crew misunderstands the clearance)	D
27 Apr 15	ATMC	GURAG(A590)	2	ATC transfer of control coordination errors due to human factors	Е
23 May 15	Tokyo ACC	5NM South East of KOHWA (Y544)	0.8	ATC system loop error (Flight crew misunderstands the clearance)	D

Event date	Source	Location of deviation	Duration of LHD (min)	Cause	code
2 Jul 15	ATMC	300NM North East of EMRON	1	Flight crew climbing or descending without ATC clearance	В
24 Jul 15	Fukuoka ACC	15NM West of SADLI(A593)	0	ATC transfer of control coordination errors due to human factors	Е
24 Aug 15	ATMC	ADNAP	8	Flight crew climbing or descending without ATC clearance	В
9 Sep 15	Naha ACC	MEVIN (B462)	0.6	ATC transfer of control coordination errors due to human factors	Е
25 Sep 15	Naha ACC	LEBIX(N884)	15	ATC transfer of control coordination errors due to human factors	Е
29 Oct 15	Tokyo ACC	5NM North East of GTC	0.2	ATC system loop error (Flight crew misunderstands the clearance)	D
30 Oct 15	Sapporo ACC	IGROD	Unknown	ATC transfer of control coordination errors due to human factors	Е
31 Oct 15	Fukuoka ACC	40NM North East of FUE (Y60)	1	ATC system loop error (Flight crew misunderstands the clearance)	D
4 Nov 15	Naha ACC	MEVIN (B462)	49	ATC transfer of control coordination errors due to human factors	Е
12 Nov 15	Naha ACC	LEBIX (N884)	3.5	ATC transfer of control coordination errors due to human factors	Е
2 Dec 15	Naha ACC	25NM North East of SAKON (A582)	4.5	ATC system loop error (Flight crew misunderstands the clearance)	D
23 Dec 15	ATMC	150NM East of LEPKI	8	ATC system loop error (Flight crew misunderstands the clearance)	D

Appendix B

Height Deviations which did not contribute to Operational Risk in the Fukuoka FIR Reported to the JASMA during the Reporting Period


Event date	Source	Duration of LHD (min)	Assigned FL	Observed / Reported(ft)	Cause	Code
27 Feb 15	Fukuoka ACC	0.8	370	37500	Other	М
7 Apr 15	Fukuoka ACC	0.8	360	35200	Severe Turbulence	Ι
25 Apr 15	Tokyo ACC	0.5	290	28700	TCAS resolution advisory and flight crew correctly responds	J
20 May 15	Fukuoka ACC	0.8	330	33700	Severe Turbulence	Ι
26 May 15	ATMC	5	390	39600	TCAS resolution advisory and flight crew correctly responds	J
13 Jun 15	ATMC	42	310	35000	Other (Lost Communications)	М
16 Jun 15	A/C Operator	0.1	360	35688	Severe Turbulence	Ι
18 Jun 15	Fukuoka ACC	0.3	380	37500	Severe Turbulence	Ι
20 Jun 15	A/C Operator	0.1	380	37640	Severe Turbulence	Ι
22 Jun 15	Fukuoka ACC	0.5	360	35540	Severe Turbulence	Ι
23 Jun 15	A/C Operator	0.5	370	36400	Severe Turbulence	Ι
6 Jul 15	A/C Operator	0.2	380	37620	Severe Turbulence	Ι

RASMAG/21-WP/XX 14-17/6/2016

Event date	Source	Duration of LHD (min)	Assigned FL	Observed / Reported(ft)	Cause	Code
7 Jul 15	Fukuoka ACC	5.5	360	30400	Airborne equipment failure and unintentional or undetected level change	Н
7 Jul 15	Fukuoka ACC	2.5	380	37200	Weather related cause	Ι
20 Jul 15	Naha ACC	2	350	33200	Weather related cause	Ι
12 Aug 15	Naha ACC	0.2	390	39300	Weather related cause	Ι
17 Aug 15	A/C Operator	0.2	380	37640	Weather related cause	Ι
18 Aug 15	A/C Operator	0	350	35350	Weather related cause	Ι
23 Aug 15	Fukuoka ACC	0.3	350	34500	Weather related cause	Ι
29 Aug 15	A/C Operator	0.1	360	35700	Weather related cause	Ι
23 Sep 15	Fukuoka ACC	1.7	380	37500	Other	М
23 Oct 15	Tokyo ACC	2	300	28300	Airborne equipment failure and unintentional or undetected level change	Н
25 Oct 15	A/C Operator	0.3	320	31570	Weather related cause	Ι
11 Nov 15	Fukuoka ACC	0.2	310	30400	Severe Turbulence	Ι

RASMAG/21-WP/XX 14-17/6/2016

Event date	Source	Duration of LHD (min)	Assigned FL	Observed / Reported(ft)	Cause	Code
24 Nov 15	Fukuoka ACC	0.7	310	31400	TCAS resolution advisory and flight crew correctly responds	J
3 Dec 15	A/C Operator	0.3	310	30600	Weather related cause	Ι
10 Dec 15	Fukuoka ACC	0.5	300	29700	Severe Turbulence	Ι

Figure 3: Fukuoka FIR – Risk Bearing LHD position and duration